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SYMBOLS, RELATIONS, AND STRUCTURAL COMPLEXITY

Peter A. Reich

Modern linguists often describe their data with a system of

rules of the form:

a is rewritten as b in the environment of c d

where a and b are strings of symbols. These symbols may represent

a tree structure collapsed into a string by means of phrase markers

(labelled parentheses). Within the tree structure the symbols may

stand for columns of plusses and minuses. The rules are linearly

ordered, or perhaps quasilinearly ordered (Chomsky, 1967; Chomsky

and Halle, 1968). This means that in producing P particular utterance,

one applies, or attempts to apply, rules to the string one is build-

ing up one at a time, in linear sequence. After applying all of the

rules, or perhaps a subset of them, one may have to reapply the rules

or a subset of them again and again until no further changes can be

made to the string. If at the end of this process the string con-

sists solely of terminal symbols, one has produced a grammatical

utterance. Basically such systems consist of symbols and a few

operations on these symbols, including match, copy, concatenate, and

replace. This system grew out of a union of the item-and-process

approach to linguistics with automata theory, an area of mathematics,



2

which grew out of the development of computers. This system can be

shown to be equivalent to a type of computer called a Turing machine

(Markov, 1954), and certain more limited systems can be shown to be

equivalent to more limited types of automata (Chomsky, 1963b).

In sharp contrast to this approach is the theory developed by

Lamb (1966a, 1966b), in which the system underlying natural language

behavior is formalized as a network of logical elements, or relation-

ships, which communicate with one another using a small set of dis-

crete signals. There are no rules in a stratificational grammar,

nor are there symbols in the usual sense of the term. One can, of

course, describe the network of relationships in terms of a set of

formulas consisting of symbols, which stand for lines in the net-

work, and operators, which stand for nodes in the network. In fact

we do this in order to input networks to the computer. However the

basic form is the network form. The first operation performed by the

Relational Network Simulator (Reich, 1968b) is conversion of the

formulas back into networks. One insight of Lamb's formulation is

that the use of symbols and rules specifying operations on these

symbols is not necessary to the description of the system underlying

natural language data. This insitTht is important, because it brings

us a small step closer to understanding how the system underlying

language might be stored and used tn the brain (Reich, 1968a).

Recently published criticism (Chomsky, 1967; Postal, 1968) of

Lamb's theory Shows considerable misunderstanding of his basically

different system.
1 This is one of a series of papers designed to
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alleviate this misunderstanding by clarifying the relational network

approach. The concern of this paper is with the relational network

equivalent of context-free phrase structure grammars (Chomsky and

Schtitzenburger, 1963). We shall show that if such grammars are

made completely explicit, they are equivalent to symmetric list

structures, and are representable as network diagrams. We shall

discuss structural complexity in this framework, and consider various

formal properties of the relations defined. We shall conclude with

a discussion of the implications of these properties for language

acquisition.

Consider the grammar given in figure 1. The arrow stands for

'rewrite as', and a space between two symbols represents concatenation.

Initial symbol: S

(1.1) S NP VP

(1.2) NP -4 A N

(1.3) VP -4 V NP

(1.4) A a

(1.5) A -4 the

(1.6) N boy

(1.7) N girl

(1.8) V hit

(1.9) V kissed

Figure 1: A simple context-free phrase structure grammar

Thus rule 1.1 can be read, 'S is rewritten as NP followed by VP'.

These are considered unordered rules (the initial numbers are inserted

merely for reference). Depending on the order the rules are applied,
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any of eight different sentences result. Thus if the rules are

applied in the order (1.1 1.2 1.4 1.6 1.3 1.8 1.2 1.5 1.7) the result

is 'a boy hit the girl', whereas if they are applied in the order

(1.1 1.2 1.5 1.7 1.3 1.8 1.2 1.4 1.6) the result is 'the girl hit

a boy'. I suggest that the concept of ordering as described above

represents a confusion of two concepts - ordering and disjunction.

When we suggest that these rules are unordered, we are not saying

all we know about the sequence in which these rules must be applied.

We know that rule 1.1 must be the first rule executed. We know that

rule 1.2 must be executed after rule 1.1, and that rule 1.3 must also

follow rule 1.1. We know that after (not necessarily immediately after)

rule 1.2 is executed we must execute either rule 1.4 or rule 1.5,

and we must also execute either rule 1.6 or 1.7. We know that every

occurrence of the execution of rule 1.2 must have been preceeded (not

necessarily immediately preceeded) either by 1.1 or by 1.3. And so on.

What we are doing, of course, is looking at the relationship of the

symbols on the right side of the rules to the symbols on the left

side.

Consider the occurrence of the symbol A in rule 1.2. There are

two occurrences of A on the left side of rules - in 1.4 and in 1.5.

Thus we can say that rule 1.2 will be followed by either rule 1.4 or

rule 1.5. If we subscript occurrences of each symbol in the grammar

as shown in figure 2, we can express this statement as an additional

rule, namely rule 2.10, in which the comma stands for the operation of

disjuction. We can produce similar rules for the symbols N and V as

given in 2.11 and 2.12 respectively. The distribution of NP is just
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(2.1)

(2.2)

(2.3)

S -5

NP1 -3

VP2 -3

NP1 VP1

Al N
1

V1 NP
3

(2.4) A2 a

(2.5) A3 -4 the

(2.6) N2 boy

(2.7) N3 girl

(2.8) V2 -4 hit

(2.9) V3 -4 kissed

(2.10) A
1

A
21

A
3

(2.11) N
1

-4 N
2'

N

(2.12) V1 -4 V2y V,)

(2.13) NP
1'

NP
3
-t NP

2

(2 14) VP
1
-4 VP

2

Figure 2: The C-F grammar of figure 1 in explicit form

the reverse of the distribution of A, N, and V. In the case of NP

there is one occurrence on the left side of a rule (in 2.2) and there

are two occurrences on the right side of rules (in 2.1 and 2.3).

Here we can say that every occurrence of the execution of rule 1.2

must have been preceeded either by 1.1 or by 1.3. Again we have

disjunction, but this time in the other direction. We express this

fact in rule 2.13. In the case of VP there is one occurrence of

the symbol on both the right and the left sides, so we simply indicate

this in rule 2.14.
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Rules 2.10 through 2.14 make explicit the implicit ordering

in the grammar of figure 1. Obviously we have the same relationship

in rules 2.10 through 2.12 as we have in rule 2.13, namely disjunction,

but with direction reversed. One of the counterintuitive artifacts

of transformational theory is that (following earlier practice in

mathematics and logic) a notation was developed to explicitly express

disjunction of the type given in rule 2.10, but none was developed

to express disjunction of the type given in rule 2.13.2 In the

transformational framework, rules 1.4 and 1.5 would be written A-0a,

the. However, disjunction does not seem to have the same status as

the operation of concatenation. Rather it is simply an 'abbreviatative

notation' (Bach, 1964:17) which represents two separate rules (Chomsky,

1957:110; 1963a:288). It does, however, seem to have higher status

than the use of symbols like [p] as abbreviations for the appropriate

column of distinctive features (Chomsky, 1965:213 footnote 14). In

the case of the former, the abbreviated rule is used in the count of

symbols as a measure of complexity (Chomsky, 1965:42ff), whereas in

the latter case, one must substitute the distinctive features before

counting symbols (see Householder, 1965:16-26).

The purpose of calling disjunction an abbreviation seems to be

to keep the system mathematically simple. This reasoning is beyond me.

If disjunction is in the system, whether implicitly or explicitly, it

is there, and giving it the epithet 'abbreviation' does not make it go

away. Since one of the purposes of building a formal system is to make

the relationships as explicit as possible, the transformational notation

may be said to be deficient with respect to disjunction of the type



7

given in rule 2.13. This lack of explicitness seems to have been

vaguely perceived by Bach (1964:51-52) When he wrote, It is annoying

to have to Skim through a long lexical list whidh turns out not to have

the symbol you are looking for, and then to be forced to look through

numerous rules to see what happens to the item (sometimes hidden in

a complex set of contexts)....It would be worthwhile practice to list

the transformations in which a gene.cal symbol is mentioned at the first

introduction of the item.' The correction of this deficiency has cer-

tain rewards, which we shall now explore.

Notice that when a grammar is given in explicit form as in figure 2,

each non-terminal, non-initial symbol has exactly two occurrences - once

on the left side of a rule, and once on the right side. Thus a symbol

on the ri.ght side of a rule serves as a pointer, or link, to the next rule

to be executed, and a symbol on the left side of a rule serves as a pointer

or link, back to the previous rule executed. A linked structure in

which every forward link has a corresponding backward link is known

as a symmetric list (Weizenbaum, 1963). Such a structure suggests

that one might represent the information in the form of a graphical

network in which the rules are nodes, and the symbols, which are really

links, are lines connecting the nodes.

Let us produce such a graph for our sample grammar. First let us

simplify the form of our grammar given in figure 2. We can eLiminate

all rules of the form x-43, where x and y are single symbols without

loss of information. We simply eliminate the ru/e, and replace the

other occurrence of x with y. This simplification leads to figure

3. (We have renamed NP1 SUBJ and have replaced NP3 by OBJ. This



(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

S SUBJ VP

NP A ft

VP V OBJ

A a, the

N boy, girl

V hit, kissed

(3.7) SUBJ, OBJ NP

Figure 3: Explicit form of C-F grammar simplified

allows us to drop all subscripts.) We see that we now have in our

grammar three types of rules - one type expressing concatenation

(rules 3.1 through 3.3), one type expressing disjunction (rules 3.4

through 3.6), and one type expressing reverse disjunction (rule 3.7).

We shall express each of these three types of rules with a different

node, as aown in figure 43 The obvious relationship between uis-

junction and reverse disjunction is expressed by using the same shaped

a.

b Ac,

(DOWNWARD ORDERED AND) (DOWNWARD UORDERED OR) (UPWARD UNORDERED OR)

concatenation disjunction reverse disjunction

Figure 4: The three noe.es needed for C-F grammar

node turned upside down. Using the appropriate node for each of the

rules on figure 3, we connect the links as the rules instruct us,

and we arrive at the network shown in fiaure 5.



9

oi33--

SuGS
VP

NP

A the. 6oy irl I t ktssed.

Figure 5: The grammar of Figure 3 expressed graphically

If we allow parenthesis notation in our algebraic formulas,

applying substitution to the seven rules of figure 3, we see that we

can express the same grammar using only two rules, as shown in figure

6. We now have three sets of rules, all explicitly describing the same

linguistic structure. In the set given in figure 3, each line of the

(6.1) S SUBJ ((hit, kissed) OBJ)

(6.2) SUBJ, OBJ --> ((a, the) (boy, girl))

Figure 6: Representation of grammar using parentheses.

network has a symbolic name in the algebraic form; in the version of

figure 2, some lines have more than one name (for example, VP1 and VP
2

name the sme line); in the version of Figure 6, same lines are not

named at all. Is one version to be preferred to another? From the

point of view of linguistic structure, the answer is no! They all

describe the same structure. Figure 6 has fewer rules and fewer symbols,

but that is just a notational artifact.
4

Consider the grammar of figure

7. It generates the same set of sentences as the grammar of figure 3.
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S -4 SUBJ ((hit, kissed) OBJ)

SUBJ OBJ (a X), (the Y)

X, Y boy, girl

Figure 7

It is described algebraically with the three rules using 31 symbols.

Is it to be preferred to the grammar of figure 3. which has seven

rules using 32 symbols? In order to answer this in a way that is

linguistically interesting, one must go to networks which each of the

algebraic formulations represent. If we compare the network in figure

5 to the network in figure 7, we find that the network in figure 7 is

more complicated than that of figure 5. We see that in figure 5 the

lines labelled a and the immediately come together in a disjunction.

In other words, they both belong to the same class. This generalization

is not made explicit in the structure of figure 7. Thus even using the

trivial grammars of our examples we find counterexamples to the notion

that complexity can be measured by counting symbols. A symbol count

measures cleverness at algebraic manipulation rather than linguistic

complexity. It would seem to be much better to base a complexity count

on the network Formulation, regardless of how it is described algebraically.

Two ways to measure the complexity of a network immediately come
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to mind. One is a count of the number of nodes and the other is a

count of the number of lines. If all nodes have exactly three lines

coming out of them, it does not matter which we choose, because the

number of lines equals the number of nodes times 3/2 plus the number

of lines which lead out from the network (i.e. connect to only one node)

limes 1/2. Since we only compare two grammars if they are equivalent

in effective inFormation - i.e. if they encode and decode the same set

of structures (Lamb, 1q166b:41-46) - the number of lines which lead

out from two networks e are legitimately comparing will always be

identical, and thus the one measure is a linear mapping of the other.

Since we are only interested in complexity as an ordinal scale (McGinnis,

lahr;:274-290), the two measures would he equivalent. However, since we

do not want to constrain our network to nodes with exactly three lines

comirn: ont of them, we must either use the count of the number of

lines-5 , or modify our node count to take into account the cases where

more or less than three lines connect to a node. One way to take

these cases into account is to count nodes connected by three lines

as 1, and to add 1 to the count for each extra line. Thus a node

connecting Four lines would have a count of 2, a node connecting

Five tines would have a count of 3, and so on. A node connecting

two lines would have a count of zero. These two counts do nol give

the same results in all cases. We shall return to this issue later.

Once we express a grammar in terms of a relational network, in-

termediate symbols become superfluous. What has become of the ooncept

of the rewrite rule? We find that we can replace it with the notion

of signals moving through the network. In the rase of a grammar utiliz-
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ing only the three nodes already discussed, the behavior of the signals

moving throughout the network is relatively straightforward.
6

We start

by sending a signal down from the top of the network. When the signal

comes in the a wire of' the concatenation node (see figure 4), the

signal continues down the b wire. Thus in Figure 5 a signal moving

down From S would move down to SUBJ. When a signal comes in the

h wire of reverse disjunction. it continues down the a wire. Thus

the signal at SUBJ would reach NP, and by thc instruction already

given, would continue to A. When a signal comes in the a wire of

disjunction, there are two possibilities. Either the signal may

continue down the b wire. or it may continue down the c wire. If one

is thinking in terms of generating sentences at random, each such choice

can be made at random. Tr one is interested in the set of all sentences,

each such choice doubles the number of potential sentences. Let us

follow the c wire. This leads to the edge of the network labelled

'the', and we say that 'the' has been output from the grammar. Timin9

in this model is handled by feedback signalling, so a signal moves up

from the line marked 'the'. A signal coming in on the c wire to a

disjunction continues up the a wire. In this case the signal comes

to A. A signal coming in the b wire of concatenation results in

a signal being sent down the c wire. We have arrived at another dis-

junction. Let us sav that this time the b wire is chosen. 'Boy'

output, and feedback is sent up to N. A signal coming in the r wire

of concatenation continues up the a wire, in this case up to NP, and

from there up to SUBJ, then down to VP, then to V, then a random selec-

tion, lei us say to 'kissed'. Feedback travels up to V. then down
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to OBJ.

Here a further specification is needed. When a signal moves from

OBJ down to NT, the node must 'remember' the Fact, so that when Feed-

back comes up to NP. the signal will return to OBJ rather than to SUBd

We say that as the signal passes through the reverse disjunction node

from the c wire to the a wire, the node changes state, and =.1..ays in

that state until a signal comes in From the b wire, whereupon the node

returns to its original state.

Thus word by wocd, a sentence such as 'the boy kissed the girl'

is produced. We have replaced the process of rewriting symbols by

a process of moving signals through the networks. The instructions

concerning how the signals move through the networks are given in terms

or state-transition deFinitions of the nodes. There definitions are

summarized in Figure R. A we build grammars to handle more romplicated

La- alb

h 7\ c c.

roncatenation disjunction

Figure P: State transition deNntions

c/a.

ibsc-''
tzrca..

reverse dis,qunction

linguistic information, these definitio:is become more oomplex and we

find that we need many different tvpes oF nodes not vet discn-sed, hut

the basic idea of signals moving throuh .,etworks remains unchaffired

One hypothesis we are exploring is that earl) oF the nodes is- Finite

We shall not explore ihis question Cn,ine,- 1 ere, since it is covered
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in some detail elsewhere (Reich, 1968d).

Let us turn now to some Formal properties of our relations. One

such property is commutativity. A relation R is commutative if h R c

is eqnivalent to c R b. In other words. one could replace b by c, and

e by b in the algebraic expression without changing the relationship oC

b and c to each other. In terms of state transition defT.ii ions, the

definition must be symmetric with respect to h and c. We see that tbis.

is true in the case of disjunction as defined in figure R. In our

diagrammatic notation we represent commutativity bv connecting tfie h and

c wires io the node at the same point. Thus it is always obvious at a

glance whether or not a particular node is commutative.

Another formal property is associativity. A relation P is assoc-

iative if h R (c R d) is equivalent to (b R c) R d. All the relations

in our system are associative. This means that when Iwo identical re-

lations are connected to one ahother as shown in part (1) of each of the

three triads of figure 9, the behavior of that portion of the network will

Figure 9: Associativity of relations

be exactly the same as seen from outside the construction as the corre-

sponding relations in navt (2), and yice versa. Since the c; oiee or

one over the other would be arbitrary, we express the construction as

a 11,ree-way relation, as shown in oarts ( ) of ihe riqure
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The associativity requirement has a clear implication for the

definition of processing in terms of signals moving through the net-

work. No timing requirements can he based on the number of nodes the

signal passes through, since the behavior of networks (1) is deFined

to be equivalent to the corresponding networks (2).

We have introduced the notion of an n-ary relation, where n is

greater than 2. Do we allow arbitrarily large n-ary relations defined

arbitrarily, or do we limit them? Our current policy, based on a

desire for definitional simplicity (Reich, l968a) is this: The only

n-ary relations we define are those which arise from associativity oF

directly connected identical relations (such as those shown in figure

9), and these are defined to behave identically to an associative con-

struction of binary relations. Thus we need only define binary and

unary relations.

We also'require, of course, that the grammar be finite, so that

the number of wires leading from any one node must be finite. While

this policy is based on formal considerations, is it possible to justify

it on,psychological or neurophysiological grounds? That is, is it

possible that the formal principle may have some underlying psycholog-

ical foundation? While it is highly speculative at this time, the

possibility should not be overlooked. There is a principle in biochem-

istry that a molecule formed from three or more molecules is always

fprmed in binary stages. The probability is too small that the three

molecules will collide simultaneously in the proper orientation. Is it

unreasonable to assume that the child learning his language builds up

the underyling neural structure step by step in very small units? This
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intuitively appealing idea poses a problem for the devlopmental

psycholinguist trying to analyze his data within a transformational

Framowork, sinee transformations are intrinsically more complex.

'To discover the exact point at which a child's grammar contains

transFormational rules is a difficult, obscure problem,' writes.Devid

McNeill (1966:54). He characterizes the process as the building of

a system of cumbersome and inelegant phrase structure rules..which

are then junked in favor of transformations. 'The pressure - or,

if you prefer, the motivation - to devise transformation rules may come

from the cognitive clutter that results from not having them (1966:61)'

We see that McNeill retreated from an incremental approach to the

synoptic concept of 'cognitive clutter.'

To return to associativity, ic concatenation is associative, what

is the meaning of immediate constituent analysis or phrase struoure

parenthesization? Why do we prefer 10.1 over 10. (Lamb. 1(166h:54),

(10.1) ((un true) ly)

(10.2) (un (true ly))

(10.3) (the (king (of England))) ((open ed) Parliament)

(10.4) (the (king oF)) (England ((open ed) Parliament))

(10.5) (they (are (flying planes)))

(10.6) (they ((are flying) planes))

(10.7) (peasants (throughout China)) (work (very hard))

(10.8) ((peasants throughout) (China work)) (very hard)

Figure 10: Phrase structure parenthesization
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10.3 over 10.4 (Wells, 1947:187-191), 10.7 over 10.8 (Nida, 1949:87),

and why do we associate 10.5 with one interpretation of the sentence

and 10.6 with another (Chomsky, 1956:118; Chomsky and SchUtzenberger,

1963:122)? The answer in terms of relational networks is quite simple.

Two identical elements connected as shown in figure 9(1) can be re-

associated to (2) if and only if there is no intervening element on

line a. Similarly two identical elements connected as shown in (2)

can be redistributed if and only if there is no intervening element

on line b. Thus a particular phrase structure parenthesization means

that the concatenation elements are separated by other nodes in such

a way that no other associations are possible without making the struc-

ture more complex. We shall discuss this in more detail after we have

concluded our discussion of formal properties.

A third formal property is distributivity. In arithmetic this

means that (a + b).c is equivalent to a.c h.C. We say that multi-

plication distributes over addition. In our system, concatenation

distributes over disjunction. This property is shown in figure 11.

Figure 11: Distributivity

In (2) concatenation is expressed once for the set of elements (c,d).

In (1) concatenation has been distributed over the disjunction. It
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is expressed once for each element in the set. Since concatenation is

not commutative, we must state the distributive rule in two forms -

left distributivity (figure 11, left), and right distributivity (figure

11, right). Notice that the difference between the grammar of figure 5

and that of figure 7 is that figure 7 is the result of distributing the

concatenation element below NP in figure 5 over the disjunction below

A.

The next formal property is coincidence. The lines leading dowr

from a disjunction an.? said to be elements of that disjunctive set.

Two sets are coincident if they contain the same elements. We see in

figure 12 that one need never state the same set twice, as is done in (1).

C )

Figure 12: Coincidence

Rather, the same effective information can be expressed once as in (2),

and the fact that the set is useful in two places in grammar is re-

presented by reverse disjunction. The simplification of set overlap

shown in (3) to structure (4) follows by application of associativity

and/or commutivity combined with set coincidence. Concatenative
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coincidence, in which a particular concatenation is expressed twice,

as in (5), can be simplified in the same way, as shown in (6). Similar-

ly, ooncatenative overlap is the application of associativity (but not

commutivity) combined with ooncatenative coincidence, converting

structures like (7) to (8).

An additional, rather trivial, formal operation one can perform

in simplifying networks is set reduction. If two elements of a set

lead to identical structures, one of the elements is redundant, and

can be eliminated. Thus in figure 13, (1) can be replaced by (2),

and (3) can be replaced by (4).

(i)

.11111111M

4..=1Mift

Figure 13: Set reduction

Let us now turn to the surprisingly thorny issue of optionality.

Consider the case where a particular wire in linguistic structure is

to be realized as either b c d or c d, as occurs, for example, in

'un friend ly' vs. 'friend ly'. Using the notation we have developed

thus far, this can be expressed either as shown in figure 14(1) or

as in 14(2). Given no other tnformation, there is no reason to choose

(1) over (2) or vice versa. One of our goals in oonstructing a formal

theory is to develop a third way of expressing the structure, neutral

with respect to the artificial distinction which differentiates the
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Figure 14

other two.- When this question arose earlier in this paper, it was a

case of associativity, and the problem was resolved by introduction of

the n-ary relation. Can this problem be,solved by reducing it to the

already solved problem? The answer turns out to be yes. In (1) and

(2), if that portion of the structure which appears within the rectangle

of dashed lines is considered to be a single node, (1) is derivable from

(2) by reassociating the two nodes. Do we need to consider this a case

of associativity of two different types of nodes? No. Consider the

alternate formalism of indicating the optionality by putting an

'optional' element on that line. If the optional element is a small

circle, we arrive at 15(1). Notice that 15(1)-has an alternate descrip-

tion in 15(2), but since we now have two contiguous concatenation

0- (a)

Figure 15
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elements, we can apply our already established associativity rule to

arrive at 15(3). This expresses the smme relationships, while being

neutral with respect to the artificial distinction. In Lamb l966b,

optionality was expressed by ',sing a zero element attached to a dis-

unction. However, considerations resulting from experiments with

various models of performance indicate that this representation is

inappropriate, and that it is best to represent optionality as a

separate element. There is one thing wrong with this formalism.

The particular case in which wire a is realizable as b, or c, or b c,

but not g (nothing), cannot be represented in this notation. One must

return to the awkward format of a bypassing line, as shown in figure

16(1). The structure shown in 16(4) allows b, c, or b c, but also g.

b \ c .6 c

Figure 16

One solution is simply to define a new node to fill the gap. This

is the and-or, shown in 16(2), and defined to be identical to 16(1).

It would be nice if we could get along without inventing a new node.

One attempt was the arrowhead notation used in Sampson (forthcoming).

An arrowhead on a line meant that that line was independent, and could

essentially bypass the concatenation element immediately above it.
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Thus in figure 17(1) a could be realized as b c d or c d. This

notation has the advantage that an arrowhead on both lines leading

down from a concatenation element, as shown in 16(3), would have the

same meaning as our missing case, 16(1), namely, that b can be an

independent realization, that c can be an independent realization,

or that b c can be a realization. In order to allow the possibility

Figure 17

of nothing as a realization, one would have to put another arrowhead

on the next oancatenation element up, as shown in 18(1). If reverse

disjunction occurs first, this fact would have to be expressed more

than once, as shown in 18(2). Worse yet, this notation has exactly

the same fault as the original bypassing line notation. Figure 17(1)

is equivalent to figure 17(2), and there is no way to neutralize the

artificial distinction between the two.

I suggested another possibility - simply define the optional

elements SO that when one occurs on both lines leading down from

concatenation, as in 19(1), its meaning is by definition equivalent to

the missing case, namely 19(2). In order to allow the option of

realization as nothing, one puts an optional element on the wire
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leading up from the cuncatenation element, as shown in 19(3). This

neutralizes the artificial distinction between 20(1) and 20(2) by the

representation 20(3). Unfortunately, this wlution is not without

problems. 20(1) looks more complicated than 20(2) since it requires

one more optionality element. But this is purely a notational arti-

fact. The two concatenation elements in 20(1) can be associated,

in spite of the fact that there is an element on the line between

them. Thus we would have an exception to our rule about when to apply

associativity. Worse yet is the exception to the associativity applica-

bility rule that would result from figure 21. This structure would

Figure 21

allow b d, or c d, or b c d. In spite of the fact that the two con-

catenation elements are contiguous, they cannot be collapsed to a

three way concatenation, nor is there an equivalent structure in

which the association loes the other way.

Because of these problems, I have reluctantly concluded that the

best solution to the problem of optionality is the one that was orig-

inally suggested; namely, mark the optional line with an optionality

element, and introduce a new element, the and-or, to take care of the

missing case.
8

Thus the structure represented in 20(1) would be

represented by 22(1), and the associativity can once again be expres-

sed in a straightforward way, 22(1) and 22(2) being equivalent to the
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Figure 22

614.

preferred 22(3). The problem structure figure 21 is represented using

the new node, as shown in 22(4), and there is no problem. The and-or

is not associative with ooncatenation, and that is that. The formal

properties of the new node are similar to those of concatenation.

Equivalence of effective information is preserved under associativity,

right and left distributivity, and coincideuce. The optional ele-

ment shows equivalence under the properties of bypass representation,

distributivity, coincidence, and reduction. The formal properties

of all nodes thus far discussed are summarized in figure 23.

What is gained by this somewhat involved discussion of formal

properties of nodes? Formalization is not a goal in itself, but is

only meaningful if it leads to insights into the data being studied.

Our goal in doing this is to increase the relevance of stratifica-

tional theory to the problems of grammatical discovery and language

acquisition. The next section of the paper is devoted to a discussion

of how we make use of the formal properties of nodes.

In our discussions of grammatical discovery, it seems useful

to distinguish among at least three logically distinct operations.
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They are association, simplification, and extrapolation. Association

may be thought of as being either unimodal or bimodal. An example

of unimodal association would be the child's learning that b follow-

ed by followed by I was a word in English, ball. Bimodal associa-

tion would be associating the word ball with an object the Child is

looking at, or with a set of objects the child knows about. Given

a grammar which describes the set of utterances the Child has heard

and understood, extrapolation would be the process of producing a

grammar which goes beyond the data, in the sense that it is capable

of producing not only the data already given, but also utterances that

the child might reasonably expect to run across in the future. In

order for association and extrapolation to be possible, a process of

simplification must also occur.

In this section we shall concern ourselves exclusively with

simplification. We shall use as an example Lamb's exercise of deter-

mining the constituent structure of (un true ly) (1966:54). Consider-

ed by itself, of course, we have no reason to prefer one association

over the other. Therefore we lodk at related data from English.

Let us consider first the four adverbs (un true ly), (un wise ly),

(true ly), and (wise ly). We say that they all occur in English,

which we can express in network terms by simply listing them as members

of the disjunctive set of adverbs, as shown in figure 24(1). We shall

call this form the disjunctive form of a network. The grammar which

consists of merely listing the data is, of course, trivial and unin-

teresting. However, by utilizing the formal properties given'in figure

23, we can convert a network to other networks which are equivalent
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in terms of effective information. Our goal is to convert the given

network to the simplest possible network which is equivalent in effec-

tive information. We see that by application of associativity of down-

ward concatenation (A(DCT)) twice to 24(1) we arrive at 24(2). Then

by applying associativity of downward disjunction (A(DDJ)) and dis -

tributivity of downward concatenation (D(DCT)) we arrive at 24(3),

and so on, step by step until we arrive at 24(8), which is the sim-

plest representation. We see that given only the information about

the four adverbs, there is no reason to parenthesize (un true ly)

any further. We therefore consider some additional information about

English; namely, that it contains the four adjectives (true), (un true),

(wise), and (un wise). In other words, we know that a structure equiv-

alent to 25(1) is also a part of the structure of English. First we

D
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Figure 25

simplify 25(1) by making use of the appropriate formal properties, as

dhown in the figure, finally arriving at 25(5). Next we combine the

adverb structure of 24(8) with the adjective structure of 25(5), re-

sulting in the structure of 26(1). Utilizing the formal properties

ti) ad( adt/ 62) &dj cult/ (3) &di adv Cq)

or imAse )), tin trve tAsie un -true. wise e toitsey un frVe caw

Figure 26

again, we discover we can reduce the network to 26(5) without affecting

the information in the network. We see that in our final network

there is a node between the two concatenation elements, so that one

constituant analysis is to be preferred, namely ((un true) ly).

Let us step back and take a look at what we are doing. Consider



r,v4,174,e, +0,

30

the set of all possible networks. We can partition this set into a

set of mutually exclusive subsets such that two networks are in the

same subset if and only if they are equivalent in effective information.

Let us look at one particular subset, say the subset of all networks

which are equivalent to 24(1). If we think of each network as a

point, we can consider the equivalences stated as formal properties

as lines connecting points. One of my goals is to identify enough

equivalence relations such that all points in the subset (all equi-

valent networks) are connected to one another SD that there is at least

one path of logical operations from any one network to any other.

The value of such a goal should be obvious. Consider a computer

program whose task is to find the simplest network equivalent to

24(1). One way it could go about its task would be to generate, one

by one, the set of all possible networks with complexity less than

24(1), then test each one to determine if it is equivalent to 24(1).

It would be much easier if the machine had a way of generating all

equivalent networks directly, which it would have if it had a complete

set of equivalence relations.

Let us assume that we have succeeded in connecting all equivalent

networks by means of a network of equivalence relations. What can we

say about a procedure for finding the simplest network?9 Consider

the points representing networks to be located in a plane. Now consider

the number which we use as a measure of complexity to represent a

height above the plane immediately above each point. A surface could

be made to pass over each of the points at the height given by the

measure of complexity. We might picture this surface as hilly country-
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side. Our problem, stated in these terms, is that, starting from

a given point on this countryside, we must explore the countryside by

following the given paths, searching for the deepest valley (lowest

complexity count). One technique is, of course, exhaustive search,

in which all points are looked at, after which the least complex is

chosen. This technique is almost never reasonable, and our problem

is no exception. Each of our equivalence subsets contains an infin-

ite number of points, which would mean the search would take a very

long time indeed. Another technique is to move down the paths in such

a way that you are almost always going downhill. That is, at almost

every step you take, the oamplexity count afterward is less than it

was before. This technique is known as hill climbing (Minsky, l9161:409

411). The successfulness of this technique depends upon the rugged-

ness of the problem terrain. If there is more than one isolated valley,

then our walk downward may take us to the wTong place, from which

vantage point it will not be at all obvious that there is an alter-

nate, better solution. The ruggedness of the problem terrain depends

importantly on the complexity measure used. We have considered two

measures in this paper - a count of the number of lines, and a count

of the number of nodes plus extra lines. Let us look at the ruggedness

of the terrain in the equivalence space of figure 24 using each of the

two oomplexity counts. In the case of the line count, the step from

(2) to (3) is downhill, the step from (3) to (4) is uphill, and the

rest of the steps from (4) to (8) are downhill all the way. In the

case of the node plus extra line count, the step from (1) to (2) is

level (no change in the complexity °punt), the step from (2) to (3)



is downhill, the step from (3) to (4) is level, (4) to (5) is

downhill, (5) to (6) is level, (6) to (7) is downhill, and (7) to

(8) is level. If we try out our two measures on an alternate sim-

plification path for the same example, shown in figure 27, the result

is the same. Similarly, the result is the same in the different
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problem spaces represented in figures 25 and 26. Based on these examples,

we would prefer the node plus extra line count, since it leads to a

less rugged problem space. Before we eliminate the line count from

our consideration, we dhould explore the difference between the two

counts more fully. The two measures are strongly nonequivalent, which

means that there exist pairs of equivalent constructions for which

the two measures give opposing results. One such example is given in
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figure 28. The line count prefers 28(2) at 8 lines to 28(1) at 9

lines, while the node plus extra line count preFers 28(1) at 4 to

28(2) at 6. The node plus extra line count corresponds to our in-

tuition that 28(1) is the simpler. Examples such as these give us

additional reasons to prefer the node plus extra line count. How-

a. b Figure 28 cL. b C ci

ever, we do prefer figure 24(8) to 24(7) and 27(8) to 27(7), which

the line count expresses while the node plus extra line count is

neutral. While the line count does handle associativity preferences,

it fails to handle other preferences, such as distributivity of down-

ward optional (figure 23). The diagram on the right is preferred

to the other two, since it neutralizes the artifactual distinction

between the other two structures. In figure 23 the preferred struc-

ture of each of the equivalent parts or triples is the one on the

right.

I have found no single number which Selects all of the finer

distinctions shown in the figure. Therefore I suggest the following

two-part algorithm to arrive at the preferred diagram: Starting at

the disjunctive form, hill climb by applying the equivalence relations

utilizing the node plus extra line count as the measure of complexity.

At any step, where more than one possible simplification is possible,

each must be tried. When no further simplifications can be made,
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the simplest structure should then be fine funed by applying equiva-

lences which do not affect the complexity count, so that all parts of

the final structure correspond to that shown on the right in each

of the equivalences shown in figure 23. These equivalences are all

local in nature, and thus can be applied in any order, independent

of one another. The resulting diagram will be the simplest possible

structure. This will be true if and only if the following conjecture

is true: Given the node plus extra line count as the measure of

complexity, there exists a sequence of equivalence operations which

convert a network in disjunctive form to the simplest network which

describes the same effective information such that the complexity

of each step is less than or equal to the complexity of the preceed-

ing step.

What this conjecture implies is that one may not need to

postulate complex special purpose mechanisms to explain how children

can learn language so rapidly. Instead, it suggests that the linguis-

tic system may, if formulated properly, be much simpler than most

theoreticians have realized, such that relatively simple learning

mechanisms suffice to accomplish the seemingly herculean task of

discovering the structure of laPguage. This conjecture would be

oonsiderably stronger if one could state that no matter what sequence

of equivalence operations was performed on the disjunctive form of a

network, the resulting network would ultimately be in its maximally

simplest form. To put it another way, it would be nice if all

paths down the mountain lead to the same valley. While this seems

to be true in the equivalence space used in figures 24 and 26, it is
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in general not true with the notation we are currently using. This

does not preclude the possibility from being true in some other nota-

tional syst2m. Although a heuristic program which chose an arbitrary

sequence of simplifying equivalence operations would not necessarily

end up with an optimal solution, this does not mean that it would not

be a reasonable model of the simplification part of language acquisition.

One need not assume that each child learning his native language nec-

essarily finds the optimal so]ution. This area is discussed further

in Reich, 1968 forthcoming.

We have tried to Show in this paper that if a grammar is stated

completely explicitly, it can be represented in the form of a relation-

al network of the type proposed by Lamb. We have discussed some ormal

properties of such networks, and have made some revisions to Lamb's

formulation which allow us to keep the formal properties and the struc-

tural complexity count as simple as possible. We have introduced the

notion of hill-climbing on equivalence spaces defined by the formal pro-

perties and the complexity count as a model of the simplification part

of language acquisition. We have suggested that using the complexity

count we proposed, the process of simplification of a grammar in dis-

junctive form is non-uphill all the way. However, we have done all

these things only with reference to a system of relationships equiva-

lent to a context-free phrase structure grammar. In other papers in

this series we extend these results to networks capable of handling

those features of language whidh cannot be handled by context-free

phrase structure grammars. Thus we find that the network approach not

only gives a simpler overall system, but one which has the added benefit

of starting us along the path of developing a detailed model of the

process of language acquisition.
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1
Part of the misunderstanding probably results from the fact that

Lamb is continually changing his theory, so that it is difficult

to obtain a coherent picture by reading articles written several

years apart. In order to alleviate this problem, Ilah Fleming is

currently writing an annotated bibliography of the stratificational

literature.

2 At least not until recently. In Chomsky (1966:424) a rule of this

type is used. Like regular disjunction, this type of rule has the

status of an abbreviation. As far as I can tell, Chomsky has not

yet realized the full import of adding this relation to his system.

3 Throughout this paper I have tried to use Chomsky's terminology

wherever possible, on the assumption that more readers have read and

understood Chomsky than have read and understood Lamb. In the dia-

grams, Lamb's terminology is indicated in parentheses. The change in

terminology is only an attempt to increase understanding. It has no

theoretical significance.

4 Lamb (1966b:54-56) refers to this as superficial information.

5 This was suggested by Lamb (1966a:555) early in 1966. Later Lamb

(1966b:46-54) went to a more complicated measure, because the measure

gave incorrect results with respect to his treatment of optionality.

In June 1966, I discovered a counterexample to this measure and pro-
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posed still another measure, the node plus extra line count which

has been in use up to now (Lockwood, 1967; Sampson, 1967). Inde-

pendent considerations have led us to modify our treatment of option-

ality, and since the new treatment negated Lamb's 1966 objections to

the line count, we shall reconsider it here.

6 The highly simplified model described in this section is not ade-

quate to handle looping, which transformationalists refer to as re-

cursion. Because of this, the simplified signal model is not equi-

valent to a context-free phrase structure grammar. If one allows

push-down storage of states of the nodes, one can build a system

that is strictly equivalent to such a grammar. As this topic is

covered in detail in Reich, 1968d, it will not be discussed here.

7 One can criticize McNeill's proposal on other grounds. The proposal

assumes that the concept of a transformation has same psychological

validity. Recent experiments have raised serious doubts about this

assumption (Fodor and Garrett, 1966; Reich, 1968a). McNPill's

measure of cognitive grammatical structure in terms of a count of the

number of rules is also questionable. For a more careful approach

to psychological complexity within the transformational framework,

see Brown and Hanlon (1968).

8
Gleason (personal communication) has suggested that concatenation,

and-or, and disjunction can all be thought of as the same function of

two variables - the minimum number of successful downward outputs,

and the maximum number of same. In concatenation the min and the max
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are both 2. In and-or, the min is 1 and the max is 2. In disjunc-..====

tion the min and max are both 1. This is an insightful way of under-

standing the nodes. However, I prefer to represent the nodes wifh

different symbols, to emphasize the differences in their formal

properties.

9
This problem looks suspiciously like syme problems for solving which

mathematicians have proved there exists no algorithm (Trakhtenbrot,

1963:92-101). This sort of proof need not concern us, since it refers

to an algorithm for solving the general class of problems, rather than

any particular problem.
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